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e RIA facility design has been developed over a
number of years by a number of groups

e Technical Risks
e No “Show Stoppers” but significant challenges
e Significant efforts on the driver linac

e Optimization strategies & detailed
considerations

e Relatively less activity on the target and
experimental areas

e Recently these arenas have seen dramatic
increase in focus

e Significant challenges and issues recognized



e Site will have appropriate space

e Layout optimization unconstrained by space
e Large range of possibilities for future
capabilities
e Design evaluations
e Minimize risks to schedule & performance

e Enhance facility potential for implementation of
improvements without significant interruptions
for users



RIA at MSU

. Over 5000 acre campus — several potentlal s1tes W1th1n 5 mlnutes of classroom

* Next generation scientists & multi-discipline synergies
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e Driver linac straight (shown) or folded — decision
based on optimization
e Future expansion paths for experimental areas
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e Multiple charge state acceleration (>Xe)

e Two stripping stations (>Xe)

e Room temperature technology through RFQ
¢ Superconducting technology beyond RFQ

e Superconducting solenoid focusing in first two linac
segments



Drlver Llnac Concept Varlatlons

o 10th sub-harmonic (80 S MHz) acceleratlng lattice
¢ Reduction in microphonics — avoid VCX tuners
e Mechanical damper & modest rf (Legnaro)

e 6D acceptance found similar to 14th sub-
harmonic (57.5 MHz)

e Only 6 cavity types — prototyped by end of 2003
e Advantage taken of Legnaro & SNS experience
e Supports early infrastructure definition

e Details reported at RIA Driver Linac Workshop
(May 2002)



Design driven by 400 MeV/nucleon uranium
28+ & 29+ U injected into SC linac at 292 keV/u
Segment 1

o Accelerated to ~12 MeV/u & stripped
Segment I1

e 5 charge states (73+2) accelerated to ~90 MeV/u
Segment I11

e Stripped and 3 charge states (88 £1) accelerated
to 400 MeV/u



river Linac Sample Beam Lis
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Segment I | Segment | Segment 111
Ion| A | Z | Energy |II Energy| Energy
(MeV/u) | MeV/u) | (MeV/u)
11.8 239 1019
11.8 172 777
11.8 136 622
11.8 123 560
Ar | 40 | I8 11.8 124 566
Kr | 86 | 36 11.8 109 510
Xe | 136 | 54 11.8 101 470
U | 238 | 92 11.8 39 400
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° Beam pre bunched for RFQ

e Additional buncher system to put two-charge-state

beams (>Xe) in every other RFQ bucket
e Similar to ANL design

Buncher Voltage (kV)
I A Vp (kV
on Q p (kV) B1 (1° harmonic) | B2
Xe | 136 | 19 & 20 | -52.38 1.242 1.754
Au | 197 | 23 & 24 0 2.134 2.135
U | 238 | 28 & 29 | +38.95 2.728 2.141
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RFQ
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e Frequency 80.5 MHz — 10 sub-harmonic of 805
MHz

Input energy = 12 keV/u

Output energy = 292 keV/u

Transverse dynamics similar for two charge states

Ratio longitudinal emittance / linac acceptance
e Ratio within ~10% of 14th sub-harmonic case §/]

Parameter Value

Length 3.07m

Mean radius R, 6.5 mm

Transverse electrode curvature p 0.8xR,

Minimum aperture a 6.19 > 4.44 mm
Modulation factor m 1.1 > 1.92

Synchronous phase ®; -25°—>-20°

Voltage 90 kV ’
Number of cells 123




e 6D match of RFQ beam to superconducting linac

e PARMELA simulations
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Superconductlng Segments

e 6 cavity types

e If reduce to S cavity types by removing {3, =0.83
e Fewer spares & NRE benefits
e Result is proton energies of ~740 MeV
Cavity | g | f EPf,laell‘d T | Linac # Of
Type (MHz) (MV/m) (K) | Segment | Cryostats
M4 10.041 1 80.5 16.5 4.2 I 2
A4 10.085 80.5 20 4.2 I 13
A2 10285 322 25 2 11 26
Ellip. | 0.49 805 32.5 2 I11 17
Ellip. | 0.63 805 32.5 2 I11 16
Ellip. | 0.83 | 805 32.5 2 111 g
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Superconductlng Structures - [2]

See details in Terry Grimm’s Talks ( Wed. )

All cavity types tested by end of year
2 types of A/4 cavities
v (B=0.041, 80.5 MHz) — (similar to Legnaro)
o (B=0.085, 80.5 MHZz) — tested by end of year
1 type of A/2 cavity
v ($=0.285, 322 MHz) — demonstrated — exceeds specs
3 types of elliptical 6 — cells

v (
v (
v (

3=0.49, 805 MHz) — demonstrated — exceeds specs
3=0.63, 805 MHz) — demonstrated — exceeds specs

3=0.83, 805 MHz) — demonstrated — exceeds specs
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Transit time factor

Transit time factor
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e [solated vacuum

e Superconducting solenoid focusing
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e Isolated Vacuum

e Two-cavity prototype — complete in ’03, tested in
‘04
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e (Q vs. Ep as function of temperature
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e Operate /2 at2 K
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o ~10% less wall plug power
o ~17% less capital cost
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e 30K
E 43K
a(l)”“l‘ ZI.IO | 2IO | ‘3IOH‘I 4
E, [MV/n]
Cavity Operating Cryogenic Plant
Temperatures (K) 4.2 K 2 K Wall | Capital
Capacity | Capacity | Plug | Cost
A4 | M2 |  Segment 3 (kW) kW) | MW) | (MS)
42 | 4.2 2 ellipticals 16.3 13.4 14.9 41 20
42 | 2 2 ellipticals 2.7 15.2 13.2 34

o



STATE MIC
BA I 10 LN

° High symmetry — good higher-order corrections

e Positioned to support longitudinal matching at
frequency changes
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° 6D dynamlc evaluatlons —no problems &
reasonable tolerances — See Wednesday talk by Wu

e SRF cavities — o
* Solenoids - o,
* Quads-o,,
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e Revised to accommodate target area developments
& to increase flexibility

e 100% to any one, 50%/50% to any two

o 50%/25%/25% to any three

o 25%/25%/25%/25% to any four
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o See Bollen talks on Wednesday

— Many R&D Issues

e 400 kW beam power
o ~10x existing designs - major technical challenge for ISOL targets

e Infrastructure proposed suitable for ultimate 400 kW
e Three (possibly staged) ISOL target stations proposed
e Redundancy & beam development & R&D to higher powers
e Goal to maximize usability of ISOL beams produced in any station

target stations with
pre-separator and
focal-plane switchyard

high-resolution
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e 400 KW infrastructure & shielding so access to

other stations possible when beam delivered to
others — R&D Required

remote handling beam dump
access room —__
static shielding

modular shielding

pre-séparator
switchyard
vertical beam lines

service
position

remote handling
access room —

primary beam target unit front end =
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e Mass separators with beam cooling may be better & cheaper — R&D
Required
e Post accelerator (8 MeV/u for A up to 240, 20 MeV/u for A<60)
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Low-energy & Stopped Beam Experimental
Area
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o Compatlble with ORNL 2003 workshop
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fundamental interactions
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o See Wednesday Talks by:
o Morrissey, Sherrill, Ronningen, & Zeller

e Two fragmentation separation systems proposed
e High acceptance to helium gas stopping station
e High resolution to high energy area

e Both could feed to high energy experimental
area

e Third channel provided for primary beam to future
possibilities

28



o Targets —R&D challenge

e High power density - ~ 500 KkW/cm? (400 KW
primary beam)

e Small spot size — reduce geometric aberrations
e ~20% of beam power lost in target
Pre-separator concept

e Begin to isolate downstream system from very
high radiation environment

High performance & radiation resistant magnets
required — R&D challenge

Characterization of radiation fields — required to
support R&D efforts

29
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e High acceptance design feeding helium gas stopping
station

e 10 T-m, 12% momentum acceptance, 10 msr
e High resolution design feeding fast beam area

e 10 T-m, 6% momentum acceptance, 8 msr

e Similar to NSCL design
e Pre-separator segment

¢ Remove primary beam & most of unwanted
fragments

e R&D Challenge

e Optical design with radiation resistant magnets
and beam interception elements

31
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e Layout

e Provides beam from gas stopping to low-energy
area

o Allows use of fragment separator to send beam
to high-energy area

e Good R&D progress made with NSCL gas cell

e Shown ~50% incident ion implanted

e Shown range-compression technique workable
o Qutstanding R&D questions remain

e What is system efficiency?

e What is rate limitation?
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o SeeT uesday talk by Thoennessen
o See Wednesday talk by Lynch
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e Fully general RIA facility accommodating baseline
and future capabilities has been developed

¢ Driver linac with beam transport
e Well detailed design
e SRF R&D remains
e Target and experimental areas
e General designs defined & issues identified

e Provides for large range of possibilities for
future capabilities

e R&D priorities identified
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